N5 – Spontaneity

THERMODYNAMICS:

Will the reaction happen under these conditions?

what is briving the Spontaneity?				
Enthalpy driven	Enthalpy change overcomes decrease in entropy	ΔH° = -		
Entropy driven	Entropy change overcomes endothermic enthalpy	∆S° = +		
Both	Enthalpy and entropy both favorable	$\Delta H^\circ = - AND$ $\Delta S^\circ = +$		
Neither	Never spontaneous b/c enthalpy and entropy are both unfavorable.	$\Delta H^\circ = + AND$ $\Delta S^\circ = -$		

Favorable			
Enthalpy	Entropy	Gibbs Free Energy	
∆H° = - Exothermic	∆S° = +	∆G° = -	
	Increase in	Spontaneous	
	entropy	Thermodynamically Favorable	
NOT Favorable			
Enthalpy	Entropy	Gibbs Free Energy	
∆H° = + Endothermic	∆S° = -	$\Delta G^{\circ} = +$	
	Decrease in	Non-spontaneous	
	entropy	NOT thermodynamically Favorable	

N6 – Entropy

Key Concepts About Entropy

#1 - a thermodynamic function that increases as the number of energetically equivalent ways of arranging the

components increases, S.

#2 – Random systems have more energy dispersal and are more energetically stable, lower energy, than ordered systems
#3 – Increase in entropy of the universe is

the driving force for spontaneous reactions.

#4 – Nature proceeds toward the states that have the highest probabilities of existing.

Practice Problem:

For the Rx: **2NO(g)** + **O**₂(g) \rightarrow **2NO**₂(g) ΔS°_{rxn} = -146.5 J/mol•K Calculate the standard molar entropy of O₂(g). $\Delta S^{\circ}_{NO(g)}$ = 210.8 J/mol•K , $\Delta S^{\circ}_{NO2(g)}$ = 240.1 J/mol•K

Some Changes that Increase Entropy
#1 - Products are in a more dispersed
arrangement.
#2 - Larger numbers of product molecules
than reactant molecules.
#3 - Rxn's that have an increase in
temperature (exothermic).
#4 – Products that have more degrees of
movement.
#5 – Products that have more molecular
complexity.

N7 – Gibbs Free Energy

Gibbs free energy, *G* - the maximum amount of work energy that can be released to the surroundings by a system for a constant temp and pressure system.

Gibbs free energy is often called the **chemical potential** because it is similar to the storing of energy in a mechanical system.

Gibbs Mental Math

	At	Any temp	Any temp	Low Temp	High Temp	High Temp	Low Temp
= \00	oys oys ∆G	ALWAYS spont.	➡ NEVER spont.	■ spont.	➡ NOT spont:	■ spont.	➡ NOT spont.
	ove ∆S	+ more disorder	■ less disorder	■ less disorder	 Instant 	+ more disorder	+ more disorder
	HΔ	■ exothermic	 ➡ endothermic 	■ exothermic	e xothermic	 ➡ endothermic 	endothermic

N7 – Gibbs Free Energy – Continued...

Δ G	K vs Q	
∆G = 0	K = Q	@ equilibrium
∆G < 0	K > Q	Shift right
∆G > 0	K < Q	Shift left

N7 – Gibbs Free Energy – Continued...again... A Variety of Helpful Equations $\Delta S_{univ} = \Delta S_{svs} + \Delta S_{surr}$ $\Delta S_{surr} = -\Delta H_{sys} / T$ $-T\Delta S_{univ} = \Delta H_{svs} - T\Delta S_{svs}$ $\Delta G_{\rm sys} = \Delta H_{\rm sys} - T \Delta S_{\rm sys}$ $\Delta G^{0} = \sum n_{p} \Delta G^{0}_{f(\text{products})} - \sum n_{r} \Delta G^{0}_{f(\text{reactants})}$ $\Delta G^{\circ} = -RT \ln(K)$ where R=8.314 J/mol•K $\Delta G = \Delta G^{\circ} + RT \ln(Q)$ $-RT \ln(K) = \Delta H^{\circ} - T\Delta S^{\circ}$ $ln(K) = -\frac{\Delta H^0}{RT} + \frac{\Delta S^0}{R}$ $=-\frac{\Delta H^0}{R}\left(\frac{1}{T}\right)+\frac{\Delta S^0}{R}$ x + bт v \equiv 1st - Graph ln(K) vs $\left(\frac{1}{2}\right)$ 2nd - Find line of best fit (Excel or graphing calculator) Intercept = $\frac{\Delta S^{\circ}}{-}$ 3^{rd} - Slope = $-\frac{\Delta H^{\circ}}{2}$

N7 – Gibbs Free Energy – still...sorry...not sorry

Practice Problems

#1 - For the following Rx: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ Calculate the standard Free Energy, ΔG° for the rxn at 25°C. $\Delta H^{\circ}= -264kJ/mol \quad \Delta S^{\circ}= -278 J/mol \cdot K$

#2 - Calculate the Boiling Point of BCl₃. BCl_{3(η} \leftrightarrow BCl_{3(g).} Given:

	H _f kJ/mol	S J/mol k
BCl ₃ (/)	-418	209
BCl ₃ (g)	-395	290

#3 - Under standard conditions (1 atm of NH₃, N₂ and H₂) and at 298 K, what substance(s) will be formed? ($\Delta G^{\circ} = 33.4 \text{ kJ}$) 2 NH₃(g) \rightarrow N₂(g) + 3 H₂(g)

#4 - Calculate the equilibrium constant for this reaction at 298 K. $2 \text{ NH}_3(g) \rightarrow N_2(g) + 3 \text{ H}_2(g) (\Delta G^\circ = 33.4 \text{ kJ})$